Formula Sheet & Directions for SAILS Tests

- Students must test with a trained SAILS teacher or a field coordinator.
- Students cannot be talking to other students.
- Students cannot use their notes when taking a test.
- Students cannot receive help of any kind from others or their teacher.

Students cannot be on any other web:	sites
--------------------------------------	-------

- Students cannot use their cell phones, smart watch, or personal electronic devices in any way except as part of an approved remote testing procedure.
- All student work papers must be blank when starting a test, and all papers must be collected by the teacher.

<u>Interest Formulas</u>		
Simple Interest: I = PRT		
Compound Interest: $A = P\left(1 + \frac{r}{n}\right)^{n*t}$		
$monthly \ payment = \frac{principal + interest}{total \ number \ of \ payments}$		

<u>Trigonometry</u>			
$\sin\Theta = \frac{opposite}{hypotenuse}$			
$\cos\Theta = \frac{adjacent}{hypotenuse}$	Whoteunse Dopposite		
$\tan\Theta = \frac{opposite}{adjacent}$	adjacent		

Geometry			
Rectangle	A = bh		
Triangle	$A = \frac{1}{2}bh$		
Trapezoid	$A = \frac{1}{2}h(b_1 + b_2)$		
Circle	$A = \pi r^2$	$C = \pi d$ or $C = 2\pi r$	
Rectangular Prism	V = LWH	SA = 2LH + 2WH + 2LW	
Sphere	$V = \frac{4}{3}\pi r^3$	$SA = 4\pi r^2$	
Cone	$V = \frac{1}{3}\pi r^2 h$	$SA = \pi r l + \pi r^2$	
Cylinder	$V = \pi r^2 h$	$SA = 2\pi rh + 2\pi r^2$	

Metric Units of Conversion (m, L, g)			
1 km = 1000 m	1 dm = .1 m		
1 hm = 100 m	1 cm = .01 m		
1 dam = 10 m	1 mm = .001 m		
U.S. (or English) Un	its of Conversion		
12 in = 1 ft	8 fl oz = 1 c		
3 ft = 1 yd	2 c = 1 pt		
5280 ft = 1 mi	2 pt = 1 qt		
16 oz = 1 lb	4 qt = 1 gal		
2000 lb = 1 ton			

Metric Unit Conversions:

kilo	hecto	deca	Base unit	deci	centi	milli
1000	100	10	m or L or g	1/10	1/100	1/1000

Important Equations and Formulas				
distance =	Percent Increase/Decrease =	midpoint =		
$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	$rac{amount\ of\ increase\ or\ decrease}{original\ amount}*100$	$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$		
<u>Point-Slope Form</u>	<u>Pythagorean Theorem</u>	Quadratic Formula		
$y - y_1 = m(x - x_1)$	$a^2 + b^2 = c^2$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		